Carbonation of raw red mud produced by aluminium refineries and a chemically and physically neutralized red mud (Bauxsol™) has been carried out to study the capacity of these wastes to capture carbon dioxide. After only 5 min of carbonation of raw red mud, total alkalinity dropped 85%. Hydroxide alkalinity was almost totally consumed, carbonate alkalinity dropped by 88%, and bicarbonate alkalinity increased to 728 mg L–1. After 24 min carbonation, the bicarbonate alkalinity reached its maximum value of 2377 mg L–1, and hydroxide and carbonate alkalinity were virtually absent. After 30 and 60 min carbonation, bicarbonate alkalinity started to decrease slightly as the pH of the slurry increased. After 5 min carbonation of Bauxsol™, total and bicarbonate alkalinity dropped 89% and 9%, respectively. After 20 min carbonation, bicarbonate alkalinity dropped another 11%, but after 30 min carbonation bicarbonate alkalinity increased 26% to levels found in the original Bauxsol material, and pH was stable. Based on these experiments, a calculation of the amount of carbon dioxide that could be removed annually at aluminium refineries in Australia is potentially 15 million tonnes, and suggests that further studies are necessary to maximize this carbon removal process. Furthermore, carbonation produces a product, which can potentially be used in other industrial and agricultural activities to remove toxic metals and nutrients.
Australian Journal of Soil Research 40(5) 805 – 815
Published: 01 August 2002
Chuxia Lin, Malcolm W. Clark, David M. McConchie, Graham Lancaster and Nick Ward
To download the full paper visit CSIRO Publishing